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Once we have time-uniform estimates for the density, all the remaining estimates, as well 
as the asymptotic forms 
reasoning as in /3/. 
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of Parabolic Type. 
2. SHHLUKHIN V.V., The 

with respect to time can be obtained by following <he same line of 
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A FlETHOD OF CALCULATING THE AERODYNAMIC CHARACTERISTICS OF BODIES ON THE 
BASIS OF INVARIANT RELATIONS OF THE THEORY OF LOCAL INTERACTION* 

A.V. ANTONHTS and A.V. DUBINSXII 

The existence of relations between the aerodynamic characteristic of solids 
of revolution of various forms that are invariant to the model of the flow 
over them and to the angle of attack is proved. A method of calculating 
the characteristics is developed on that basis. An example of its use 
for bodies with a generatrix of exponential form is considered, and a 
comparison with "exact" numerical calculations is made. 

Within the framework of models of local interaction (/l-4/ and others) the local intera- 
ction force of the flow at each point of the body surface depends only on the local angle of 
attack and on parameters that define the process of flow over bodies "as a whole". Such models 
are effectively used over a wide range of flows (the free molecular mode, hypersonic flows of 
dense and rarefied gas, the light stream flow, and the intermediate region of rarefied gas 
flow). However, existing methods of aerodynamic calculations (/1,4/ and others) presume a 
knowledge of the specific model of local interaction. 

Let the surface of a convex solid of revolution in the system of coordinates .~cpr attached 
to the body be given by the function r(+)with the 01 axis directed along the body axis. An 
expression for the coefficient of the projection of the aerodynamic force R on some direction 
defined by the unit vector I can be represented in the form 

where g is the pressure head, oc is the angle of attack, and Sk and rt are the area and 
radius of the middle cross section. The functions Fr,rDI depend on the indicated arguments 
and the model of the flow, and u ==&/dr is the cotangent angle of inclination of the body 
contour to its axis that takes values from u_ to u+. 

Let us consider n++ bodies whose generatrix angle of inclination to the axis varies 
over the same range. The subscript Y indicates the number of the body. Then, if the function 
r, (u) (v = 0, 1, . - ., n) satisfies the condition 

(2) 

it follows from (1) that their AXC1,, of the same kind are connected by the relation 
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(3) 

This relation is invariant to the choice of the function UJ,, which is the same for all 

bodies, i.e. the relation holds for any model of local interaction and, unlike the case of two 
three-dimensional bodies in /5/, for any angle of attack and any component of the aerodynamic 
force. Since we consider bodies whose generatrices start from the origin of coordinates, we 

set c = 0. 

O*Z 

Fig.1 

v&z 4 

Fig.2 

Hence on the basis of information about the drag and lift coefficients C,(a,u+),C,,,.(a,~+) 
of several "basic" bodies, by varying the parameters /%, we can obtain the respective chara- 

cteristics c,,(cc,u+),C,(C(,Y+) of a wide class of configurations. The calculation is based only 

on the assumption of the local nature of the interaction of the flow with the body surface, 
and does not require a knowledge of the specific model of local interaction, i.e. it enables 
us to calculate the aerodynamic characteristics under conditions, when the information neces- 
sary to determine the forces acting on the surface of the bodies is not available, and other 
methods of aerodynamic calculation are inapplicable. 

Let the C,,(a,u+) of basic bodies be known, as before, and suppose it is required to 

determine the Cl,,(a,u+) of a body of given form. Naturally a p,, that will ensure that condition 
(2) is satisfied does not generally exist. However, if one interprets fi, as a coefficient of 
expansion of the function Q?(U)/ rkO' with respect to the basic functions r,"(~)/r~?, it is possible 
in the majority of cases to expect an acceptable accuracy when calculating the characteristics 
using Eqs.(3), with the advantage that the procedure is relatively simple. 

The practical importance of this approach lies in the fact that it can be used when other 
methods of determining the characteristics, that do not require a knowledge of the specific 
flow model, are not available. Various methods based on interpolation cannot generally be 
considered as alternatives owing to the non-availability of a parameter with which it can be 
realized. Note that the idea of the method in /5/ for solving "straight" problems of finding 
the characteristics of bodies of a given form was suggested earlier by A. I. Bunimovich and 
G. G. Chernyi. 

As an example, consider the case when all the bodies are of "exponential" form, i.e. 

The choice of a class of bodies is determined by the availability of systematic published 
results of "axact" numerical calculations /6/, which together with the additionally determined 
non-symmetric flows over bodies, prwide a vast amount of information suitable for analyzing 
the accuracy of the proposed method, and confirming the invariance of relations (3). 

Using the method of least squares to find B, in the Segment O<a/sk<i we obtain a set 
of linear algebraic equations whose solution has the form 

Thus in the case of bodies of exponential form simple explicit formulas exist for calcu- 
lating the coefficient fl,,, that are independent of the flow model and the angle of attack, 
for which the characteristic is considered, and also of the parameter s+* which is the same 
for all bodies. Hence for a particular class of bodies of exponential form the calculation 
of the characteristics using Eqs.(3) and (4) is preferable to the method of interpolation with 
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respect to 2s. 
Taking as basic bodies with exponents ml = 0.5, m2- 0.6, n/3 = 0.7, for m,, = 0.55 and m0 = 0.65 

and using formula (4) we obtain, & = 0.374, b,= 0.758, PI = -0.134 and fi, = -0.121, & = 0.734, j& = 0.389 
respectively. 

Curves of the functions C,&/nr) are shown in Fig.1, calculated using the results obtained 
in f6/ for a Mach number M,=~.&,co;~== 1.4 of the oncoming flow, and those calculated using 
the method described in /7/ are presented in Fig.2 for bcdies of exponential form with a 
spherical nose (this deformation does not require a recalculation of &,)forthree-dimensional 
flow of anidealgb overa bodya- 10“, M, = 20, y= 1.4. The small circlesanddots corretapond to re- 
calc~ationsusingEq.l3),the solidlinescorrespondto m,= O.&and the dashed lines to mp = 0.55. 

It can be se+en that the determination of aerodydc calculations using relations (3) 
enables us to obtain estimates of the aerodynamics force components that 
exact calculations for the supersonic flow of an‘ideal gas over a body. 
also to the flow of an equilibrium and non-equilibrium dissociating gas. 
the non-dependence of the coefficients &, on the flow conditions over 
of attack and, also, of which aerodynamic force component is considered, 

are very close to the 
This result applies 
For actual gas flows 
the body, the angle 
is confirmed. 
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EQUILIBRIUM IN A CUT ALONG AN ARC OF A CIRCLE IN THE CASE OF 
INH~O~ENEOUS INTERACTION OF THE EDGES* 

1u.v. ZAITNIKOV and B.M. TULINCV 

Equilibrium in a cut along the arc of a circle is considered for the case 
of biaxial tension-compression. Under such a stress a free surface forms 
along the cut, and a zone of adhesion and mutual displacement appears in 
the region of contact when frictional forces are present. A non-singular 
solution is constructed for this case at the boundary of the zone of contact 
and free surface, and of the zone of adhesion and mutual displacement. 
Earlier, the problems of the free surface as well as the region of contact 
were considered in /l--3/. A solution was found in /4f for a cut along the 
arc of a circle in a complex state of stress for the case when the edges 
interact at the extension of the cut, taking into account the formation 
of the adhesion and displacement zones. 

1. Consider a cut along the arc of a unit circle. The equation of the cut in r,cd -co- 

ordinates is I== costt,y= sinB,ae<B<$. (%,po are thecoordinates of the cut boundary). We have 

at infinity the mutually perpendicular stresses P,~@<O,q=sP;O)and p makes an angle y with 
the o+-axis. We shall describe the stress state using the complex Kolosov-Muskhelishvili 
potentials a(x), V(I) /li 

0, +.ee = 2 lcb (r) 4 a* @)I (L.1) 
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